Shades & Hues

22. Gaymer. Vegetarian. Biology Undergrad. Science is my mistress; she is both cruel and capricious. According to Jungian psychology, I am an ISTP now.

- click for links -

will-85:

personalseries1:

astrodidact:

mucholderthen:

Found! First Earth-Size Planet That Could Potentially Support Life
Astronomers have discovered a planet about the size of Earth,
orbiting its star in the zone where oceans of liquid water would be possible.

From Space.com

A study of the newly-found planet indicates it could have an Earth-like atmosphere and water at its surface. The planet Kepler-186f is the fifth planet of the star Kepler-186, 490 light-years away.

The planet has 1.11 times the Earth’s mass. Its radius is 1.1 times that of Earth. Kepler-186f orbits at 32.5 million miles (52.4 million kilometers) from its parent star. Its year is 130 Earth days. 

The planet orbits Kepler-186, an M-type dwarf star less than half as massive as the sun. Because the star is cooler than the sun, the planet receives solar energy less intense than that received by Mars in our solar system, despite the fact that Kepler-186f orbits much closer to its star.

I can’t put into words how much I love infographics. 

490 light-years away

490 light-years away

490 light-years away

It kinda makes it somewhat irrelevant

And people still believe we are the only life out here

korranation:

HAPPY EARTH(BENDING) DAY! 

Show us your earthbending GIFs using the #earthbendingday tag on Tumblr. We’ll inbox our fave contributors and send over LoK and A:TLA hardcover artbooks, courtesy of Darkhorse!

hyperroos:

let’s play a randomized nuzlocke.

image

no.

image

no no. no no no no.

image

YES.

image

NOO.

neurosciencestuff:


Functional brain imaging reliably predicts which vegetative patients have potential to recover consciousness
A functional brain imaging technique known as positron emission tomography (PET) is a promising tool for determining which severely brain damaged individuals in vegetative states have the potential to recover consciousness, according to new research published in The Lancet.
It is the first time that researchers have tested the diagnostic accuracy of functional brain imaging techniques in clinical practice.
“Our findings suggest that PET imaging can reveal cognitive processes that aren’t visible through traditional bedside tests, and could substantially complement standard behavioural assessments to identify unresponsive or “vegetative” patients who have the potential for long-term recovery”, says study leader Professor Steven Laureys from the University of Liége in Belgium.
In severely brain-damaged individuals, judging the level of consciousness has proved challenging. Traditionally, bedside clinical examinations have been used to decide whether patients are in a minimally conscious state (MCS), in which there is some evidence of awareness and response to stimuli, or are in a vegetative state (VS) also known as unresponsive wakefulness syndrome, where there is neither, and the chance of recovery is much lower. But up to 40% of patients are misdiagnosed using these examinations.
“In patients with substantial cerebral oedema [swelling of the brain], prediction of outcome on the basis of standard clinical examination and structural brain imaging is probably little better than flipping a coin,” writes Jamie Sleigh from the University of Auckland, New Zealand, and Catherine Warnaby from the University of Oxford, UK, in a linked Comment.
The study assessed whether two new functional brain imaging techniques—PET with the imaging agent fluorodeoxyglucose (FDG) and functional MRI (fMRI) during mental imagery tasks—could distinguish between vegetative and MCS in 126 patients with severe brain injury (81 in a MCS, 41 in a VS, and four with locked-in syndrome—a behaviourally unresponsive but conscious control group) referred to the University Hospital of Liége, in Belgium, from across Europe. The researchers then compared their results with the well-established standardised Coma Recovery Scale–Revised (CSR-R) behavioural test, considered the most validated and sensitive method for discriminating very low awareness.
Overall, FDG-PET was better than fMRI in distinguishing conscious from unconscious patients. Mental imagery fMRI was less sensitive at diagnosis of a MCS than FDG-PET (45% vs 93%), and had less agreement with behavioural CRS-R scores than FDG-PET (63% vs 85%). FDG-PET was about 74% accurate in predicting the extent of recovery within the next year, compared with 56% for fMRI.
Importantly, a third of the 36 patients diagnosed as behaviourally unresponsive on the CSR-R test who were scanned with FDG-PET showed brain activity consistent with the presence of some consciousness. Nine patients in this group subsequently recovered a reasonable level of consciousness.
According to Professor Laureys, “We confirm that a small but substantial proportion of behaviourally unresponsive patients retain brain activity compatible with awareness. Repeated testing with the CRS–R complemented with a cerebral FDG-PET examination provides a simple and reliable diagnostic tool with high sensitivity towards unresponsive but aware patients. fMRI during mental tasks might complement the assessment with information about preserved cognitive capability, but should not be the main or sole diagnostic imaging method.”
The authors point out that the study was done in a specialist unit focusing on the diagnostic neuroimaging of disorders of consciousness and therefore roll out might be more challenging in less specialist units.
Commenting on the study Jamie Sleigh and Catherine Warnaby add, “From these data, it would be hard to sustain a confident diagnosis of unresponsive wakefulness syndrome solely on behavioural grounds, without PET imaging for confirmation…[This] work serves as a signpost for future studies. Functional brain imaging is expensive and technically challenging, but it will almost certainly become cheaper and easier. In the future, we will probably look back in amazement at how we were ever able to practise without it.”

neurosciencestuff:

Functional brain imaging reliably predicts which vegetative patients have potential to recover consciousness

A functional brain imaging technique known as positron emission tomography (PET) is a promising tool for determining which severely brain damaged individuals in vegetative states have the potential to recover consciousness, according to new research published in The Lancet.

It is the first time that researchers have tested the diagnostic accuracy of functional brain imaging techniques in clinical practice.

“Our findings suggest that PET imaging can reveal cognitive processes that aren’t visible through traditional bedside tests, and could substantially complement standard behavioural assessments to identify unresponsive or “vegetative” patients who have the potential for long-term recovery”, says study leader Professor Steven Laureys from the University of Liége in Belgium.

In severely brain-damaged individuals, judging the level of consciousness has proved challenging. Traditionally, bedside clinical examinations have been used to decide whether patients are in a minimally conscious state (MCS), in which there is some evidence of awareness and response to stimuli, or are in a vegetative state (VS) also known as unresponsive wakefulness syndrome, where there is neither, and the chance of recovery is much lower. But up to 40% of patients are misdiagnosed using these examinations.

“In patients with substantial cerebral oedema [swelling of the brain], prediction of outcome on the basis of standard clinical examination and structural brain imaging is probably little better than flipping a coin,” writes Jamie Sleigh from the University of Auckland, New Zealand, and Catherine Warnaby from the University of Oxford, UK, in a linked Comment.

The study assessed whether two new functional brain imaging techniques—PET with the imaging agent fluorodeoxyglucose (FDG) and functional MRI (fMRI) during mental imagery tasks—could distinguish between vegetative and MCS in 126 patients with severe brain injury (81 in a MCS, 41 in a VS, and four with locked-in syndrome—a behaviourally unresponsive but conscious control group) referred to the University Hospital of Liége, in Belgium, from across Europe. The researchers then compared their results with the well-established standardised Coma Recovery Scale–Revised (CSR-R) behavioural test, considered the most validated and sensitive method for discriminating very low awareness.

Overall, FDG-PET was better than fMRI in distinguishing conscious from unconscious patients. Mental imagery fMRI was less sensitive at diagnosis of a MCS than FDG-PET (45% vs 93%), and had less agreement with behavioural CRS-R scores than FDG-PET (63% vs 85%). FDG-PET was about 74% accurate in predicting the extent of recovery within the next year, compared with 56% for fMRI.

Importantly, a third of the 36 patients diagnosed as behaviourally unresponsive on the CSR-R test who were scanned with FDG-PET showed brain activity consistent with the presence of some consciousness. Nine patients in this group subsequently recovered a reasonable level of consciousness.

According to Professor Laureys, “We confirm that a small but substantial proportion of behaviourally unresponsive patients retain brain activity compatible with awareness. Repeated testing with the CRS–R complemented with a cerebral FDG-PET examination provides a simple and reliable diagnostic tool with high sensitivity towards unresponsive but aware patients. fMRI during mental tasks might complement the assessment with information about preserved cognitive capability, but should not be the main or sole diagnostic imaging method.”

The authors point out that the study was done in a specialist unit focusing on the diagnostic neuroimaging of disorders of consciousness and therefore roll out might be more challenging in less specialist units.

Commenting on the study Jamie Sleigh and Catherine Warnaby add, “From these data, it would be hard to sustain a confident diagnosis of unresponsive wakefulness syndrome solely on behavioural grounds, without PET imaging for confirmation…[This] work serves as a signpost for future studies. Functional brain imaging is expensive and technically challenging, but it will almost certainly become cheaper and easier. In the future, we will probably look back in amazement at how we were ever able to practise without it.”

scientistmary:

Striped icebergs are quite a view. They can form a couple different ways. Blue stripes occur when layers of ice melt and refreeze so fast that no bubbles — which scatter light to give icebergs their white appearance — are created. If the water that freezes is rich in algae, the bands may appear green. Black, brown, and yellow striations are created by sediments picked up by a glacier as it runs down a mountain into the ocean.

older-and-far-away:


kirbomatic:

happy earth day friends

this is…the best possible use of this particular gif. 

older-and-far-away:

kirbomatic:

happy earth day friends

this is…the best possible use of this particular gif. 

momochanners:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

k-for-kris:

In every incarnation, every timeline, every vision, it is destiny for finn to lose his right arm, i knew it would be connected to the grass sword but i had no idea it would be this soon

jtotheizzoe:

theolduvaigorge:

What Happens to Your Body after You Die? [animation]

  • from Scientific American

Whatever your beliefs, most people would agree that the body left behind when we depart this mortal coil is just a heap of bones and flesh. But what happens to those leftovers? Assuming that nature is left to its own devices, our bodies undergo a fairly standard process of decomposition that can take anywhere from two weeks to two years.”


Written & narrated by Mark Fischetti
Assistant editor: Kathryn Free
Produced, edited & animated by Eric R. Olson

(Source: Scientific American)

I can’t wait to be a tree. Well, actually I CAN wait, but it’s gonna be cool when it happens.

Tagged: #art

mimzors:

pr1nceshawn:

Your Love Life, As Described by Videogames by Coleman Engle.

YOU HAVE NO IDEA HOW ACCURATE THIS IS

Tagged: #Gamer Truths

takingcasualties:

dimensionslip:

kojuro:

aguabend:

toopsy:

mako?

image

mako??

image

makO???

image

MAKO????

image

MAKO?????????????????

image

MAKO

image

image

??????????????

image

MAKO(TO)

???????????????????????????

image

MAKO

image